Working Model on Waste Water Management Make a Easy Modle With Wood Graph

Converting wastewater into an effluent for return to the water cycle

Wastewater treatment is a process used to remove contaminants from wastewater and convert it into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environment or is reused for various purposes (called water reclamation).[1] The treatment process takes place in a wastewater treatment plant. There are several kinds of wastewater which are treated at the appropriate type of wastewater treatment plant. For domestic wastewater (also called municipal wastewater or sewage), the treatment plant is called a sewage treatment plant. For industrial wastewater, treatment either takes place in a separate industrial wastewater treatment plant, or in a sewage treatment plant (usually after some form of pre-treatment). Further types of wastewater treatment plants include agricultural wastewater treatment plants and leachate treatment plants.

Processes commonly used in wastewater treatment include phase separation (such as sedimentation), biological and chemical processes (such as oxidation) or polishing. The main by-product from wastewater treatment plants is a type of sludge which is usually treated in the same or another wastewater treatment plant.[2] : Ch.14 Biogas can be another by-product if anaerobic treatment processes are used. Treated wastewater can be reused as reclaimed water. The main purpose of wastewater treatment is for the treated wastewater to be able to be disposed or reused safely. However, before it is treated, the options for disposal or reuse must be considered so the correct treatment process is used on the wastewater.

The term "wastewater treatment" is often used to mean "sewage treatment".[3]

Types of treatment plants [edit]

Wastewater treatment plants may be distinguished by the type of wastewater to be treated. There are numerous processes that can be used to treat wastewater depending on the type and extent of contamination. The treatment steps include physical, chemical and biological treatment processes.

Types of wastewater treatment plants include:

  • Sewage treatment plants
  • Industrial wastewater treatment plants
  • Agricultural wastewater treatment plants
  • Leachate treatment plants

Sewage treatment plants [edit]

Aeration tank of an activated sludge process at the wastewater treatment plant in Dresden-Kaditz, Germany

Sewage treatment (or domestic wastewater treatment, municipal wastewater treatment) is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable for discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges.[4] Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems (including on-site treatment systems) to large centralized systems involving a network of pipes and pump stations (called sewerage) which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter (measured as biological oxygen demand) from sewage,  using aerobic or anaerobic biological processes.

A large number of sewage treatment technologies have been developed, mostly using biological treatment processes. Engineers and decision makers need to take into account technical and economical criteria, as well as quantitative and qualitative aspects of each alternative when choosing a suitable technology.[5] : 215 Often, the main criteria for selection are: desired effluent quality, expected construction and operating costs, availability of land, energy requirements and sustainability aspects. In developing countries and in rural areas with low population densities, sewage is often treated by various on-site sanitation systems and not conveyed in sewers. These systems include septic tanks connected to drain fields, on-site sewage systems (OSS), vermifilter systems and many more. On the other hand, advanced and relatively expensive sewage treatment plants in cities that can afford them may include tertiary treatment with disinfection and possibly even a fourth treatment stage to remove micropollutants.

At the global level, an estimated 52% of sewage is treated.[6] However, sewage treatment rates are highly unequal for different countries around the world. For example, while high-income countries treat approximately 74% of their sewage, developing countries treat an average of just 4.2%.[6]

Industrial wastewater treatment plants [edit]

Wastewater from an industrial process can be converted at a treatment plant to solids and treated water for reuse.

Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater (or effluent) may be reused or released to a sanitary sewer or to a surface water in the environment. Some industrial facilities generate wastewater that can be treated in sewage treatment plants. Most industrial processes, such as petroleum refineries, chemical and petrochemical plants have their own specialized facilities to treat their wastewaters so that the pollutant concentrations in the treated wastewater comply with the regulations regarding disposal of wastewaters into sewers or into rivers, lakes or oceans.[7] : 1412 This applies to industries that generate wastewater with high concentrations of organic matter (e.g. oil and grease), toxic pollutants (e.g. heavy metals, volatile organic compounds) or nutrients such as ammonia.[8] : 180 Some industries install a pre-treatment system to remove some pollutants (e.g., toxic compounds), and then discharge the partially treated wastewater to the municipal sewer system.[9] : 60

Most industries produce some wastewater. Recent trends have been to minimize such production or to recycle treated wastewater within the production process. Some industries have been successful at redesigning their manufacturing processes to reduce or eliminate pollutants.[10] Sources of industrial wastewater include battery manufacturing, chemical manufacturing, electric power plants, food industry, iron and steel industry, metal working, mines and quarries, nuclear industry, oil and gas extraction, petroleum refining and petrochemicals, pharmaceutical manufacturing, pulp and paper industry, smelters, textile mills, industrial oil contamination, water treatment and wood preserving. Treatment processes include brine treatment, solids removal (e.g. chemical precipitation, filtration), oils and grease removal, removal of biodegradable organics, removal of other organics, removal of acids and alkalis, and removal of toxic materials.

Agricultural wastewater treatment plants [edit]

Leachate treatment plants [edit]

Leachate treatment plants are used to treat leachate from landfills. Treatment options include: biological treatment, mechanical treatment by ultrafiltration, treatment with active carbon filters, electrochemical treatment including electrocoagulation by various proprietary technologies and reverse osmosis membrane filtration using disc tube module technology.[12]

Unit processes [edit]

Diagram of a typical surface-aerated basin for wastewater treatment.

The unit processes involved in wastewater treatment include physical processes such as settlement or flotation and biological processes such oxidation or anaerobic treatment. Some wastewaters require specialized treatment methods. At the simplest level, treatment of most wastewaters is carried out through separation of solids from liquids, usually by sedimentation. By progressively converting dissolved material into solids, usually a biological floc or biofilm, which is then settled out or separated, an effluent stream of increasing purity is produced.[2] [13]

Phase separation [edit]

Clarifiers are widely used for wastewater treatment.

Phase separation transfers impurities into a non-aqueous phase. Phase separation may occur at intermediate points in a treatment sequence to remove solids generated during oxidation or polishing. Grease and oil may be recovered for fuel or saponification. Solids often require dewatering of sludge in a wastewater treatment plant. Disposal options for dried solids vary with the type and concentration of impurities removed from water.[14]

Primary settling tank of wastewater treatment plant in Dresden-Kaditz, Germany

Sedimentation [edit]

Solids such as stones, grit, and sand may be removed from wastewater by gravity when density differences are sufficient to overcome dispersion by turbulence. This is typically achieved using a grit channel designed to produce an optimum flow rate that allows grit to settle and other less-dense solids to be carried forward to the next treatment stage. Gravity separation of solids is the primary treatment of sewage, where the unit process is called "primary settling tanks" or "primary sedimentation tanks."[15] It is also widely used for the treatment of other types of wastewater. Solids that are denser than water will accumulate at the bottom of quiescent settling basins. More complex clarifiers also have skimmers to simultaneously remove floating grease such as soap scum and solids such as feathers, wood chips, or condoms. Containers like the API oil-water separator are specifically designed to separate non-polar liquids.[16] : 111–138

Biological and chemical processes [edit]

Oxidation [edit]

Oxidation reduces the biochemical oxygen demand of wastewater, and may reduce the toxicity of some impurities. Secondary treatment converts organic compounds into carbon dioxide, water, and biosolids through oxidation and reduction reactions.[17] Chemical oxidation is widely used for disinfection.

Biochemical oxidation (secondary treatment) [edit]
Chemical oxidation [edit]

Advanced oxidation processes are used to remove some persistent organic pollutants and concentrations remaining after biochemical oxidation.[16] : 363–408 Disinfection by chemical oxidation kills bacteria and microbial pathogens by adding hydroxyl radicals such as ozone, chlorine or hypochlorite to wastewater.[2] : 1220 These hydroxyl radical then break down complex compounds in the organic pollutants into simple compounds such as water, carbon dioxide, and salts.[19]

Anaerobic treatment [edit]

Anaerobic wastewater treatment processes (for example UASB, EGSB) are also widely applied in the treatment of industrial wastewaters and biological sludge.

Polishing [edit]

Polishing refers to treatments made in further advanced treatment steps after the above methods (also called "fourth stage" treatment). These treatments may also be used independently for some industrial wastewater. Chemical reduction or pH adjustment minimizes chemical reactivity of wastewater following chemical oxidation.[16] : 439 Carbon filtering removes remaining contaminants and impurities by chemical absorption onto activated carbon.[2] : 1138 Filtration through sand (calcium carbonate) or fabric filters is the most common method used in municipal wastewater treatment.

See also [edit]

  • List of largest wastewater treatment plants
  • List of wastewater treatment technologies
  • Water treatment

References [edit]

  1. ^ "wastewater treatment | Process, History, Importance, Systems, & Technologies". Encyclopedia Britannica. October 29, 2020. Retrieved 2020-11-04 .
  2. ^ a b c d Metcalf & Eddy, Inc. (2003). Wastewater Engineering: Treatment and Reuse (4th ed.). New York: McGraw-Hill. ISBN0-07-112250-8.
  3. ^ Tchobanoglous, George; Burton, Franklin L.; Stensel, H. David; Metcalf & Eddy, Inc. (2003). Wastewater Engineering: Treatment and Reuse (4th ed.). McGraw-Hill. ISBN978-0-07-112250-4.
  4. ^ Khopkar, S.M. (2004). Environmental Pollution Monitoring And Control. New Delhi: New Age International. p. 299. ISBN978-81-224-1507-0.
  5. ^ Von Sperling, M. (2015). "Wastewater Characteristics, Treatment and Disposal". Water Intelligence Online. 6: 9781780402086. doi:10.2166/9781780402086. ISSN 1476-1777.
  6. ^ a b Jones, Edward R.; van Vliet, Michelle T. H.; Qadir, Manzoor; Bierkens, Marc F. P. (2021). "Country-level and gridded estimates of wastewater production, collection, treatment and reuse". Earth System Science Data. 13 (2): 237–254. Bibcode:2021ESSD...13..237J. doi:10.5194/essd-13-237-2021. ISSN 1866-3508.
  7. ^ Tchobanoglous, G., Burton, F.L., and Stensel, H.D. (2003). Wastewater Engineering (Treatment Disposal Reuse) / Metcalf & Eddy, Inc (4th ed.). McGraw-Hill Book Company. ISBN0-07-041878-0. {{cite book}}: CS1 maint: multiple names: authors list (link)
  8. ^ "Chapter 3: Analysis and Selection of Wastewater Flowrates and Constituent Loadings". Wastewater engineering: treatment and reuse. George Tchobanoglous, Franklin L. Burton, H. David Stensel, Metcalf & Eddy (4th ed.). Boston: McGraw-Hill. 2003. ISBN0-07-041878-0. OCLC 48053912. {{cite book}}: CS1 maint: others (link)
  9. ^ Von Sperling, M. (2015). "Wastewater Characteristics, Treatment and Disposal". Water Intelligence Online. 6: 9781780402086. doi:10.2166/9781780402086. ISSN 1476-1777.
  10. ^ "Pollution Prevention Case Studies". Washington, D.C.: U.S. Environmental Protection Agency (EPA). 2021-08-11.
  11. ^ Reed, Sherwood C. (1988). Natural systems for waste management and treatment. E. Joe Middlebrooks, Ronald W. Crites. New York: McGraw-Hill. ISBN0-07-051521-2. OCLC 16087827.
  12. ^ "Landfills Effluent Guidelines". EPA. 2018-03-16.
  13. ^ Primer for Municipal Waste water Treatment Systems (Report). Washington, DC: US Environmental Protection Agency (EPA). 2004. EPA 832-R-04-001. .
  14. ^ Ajay Kumar Mishra Smart Materials for Waste Water Applications, Wiley-Scrivener 2016 ISBN 111904118X https://onlinelibrary.wiley.com/doi/book/10.1002/9781119041214
  15. ^ Gupta, Ashok; Yan, Denis, eds. (2016-01-01), "Chapter 16 - Gravity Separation", Mineral Processing Design and Operations (Second Edition), Amsterdam: Elsevier, pp. 563–628, doi:10.1016/B978-0-444-63589-1.00016-2, ISBN978-0-444-63589-1 , retrieved 2020-11-30
  16. ^ a b c Weber, Walter J. (1972). Physicochemical processes for water quality control. New York: Wiley-Interscience. ISBN0-471-92435-0. OCLC 389818.
  17. ^ BERGENDAHL, JOHN. "Applications of Advanced Oxidation for Wastewater Treatment" (PDF). Dept. Of Civil & Environmental Engineering, WPI.
  18. ^ Wastewater engineering : treatment and reuse. George Tchobanoglous, Franklin L. Burton, H. David Stensel, Metcalf & Eddy (4th ed.). Boston: McGraw-Hill. 2003. ISBN0-07-041878-0. OCLC 48053912. {{cite book}}: CS1 maint: others (link)
  19. ^ Deng, Yang; Zhao, Renzun (2015-09-01). "Advanced Oxidation Processes (AOPs) in Wastewater Treatment". Current Pollution Reports. 1 (3): 167–176. doi:10.1007/s40726-015-0015-z. ISSN 2198-6592.

lopezthadint.blogspot.com

Source: https://en.wikipedia.org/wiki/Wastewater_treatment

0 Response to "Working Model on Waste Water Management Make a Easy Modle With Wood Graph"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel